Science Education – How I Would Do It.

Science Education – How I Would Do It.


Of course, this is assuming that the world was a sensible place and I was in charge of all the important decision-making. Heh.

Over time, I’ve come to realize that a lot of the things I was taught in school didn’t stick because they weren’t interesting. They weren’t interesting because they were unrelated to my life, and I couldn’t see how they could possibly be important to me. I memorized things for tests, and I did a darn good job of it, good grades, good standardized test scores, but only because I had to, not because I wanted to.

As I got older some of it came back – and it stuck better because I had context to put it in. Before kids and before antidepressants, I read a lot of romance novels for escape (I know. . .I’m not proud, but I had an excuse.) Soon I discovered that there was a sub-genre of Historical Fiction – and some of these authors were real history buffs who included a lot of factual information. In the context of a story, with characters and plots that engaged me, I was finally learning something about history, which had bored me to tears in High School.

Later, I started reading some of the books and papers that had been assigned back then. . .suddenly they were interesting and made sense – because I now had a context for them. The context continued to expand, and more information became part of what I knew.

_______________

For me, possibly moreso than for many people, context is essential. My ADHD mental filing system demands context and associations not only for learning, but for retrieving that learning. So when I teach people what I know, I teach it in context. I learn a lot by making mistakes, so I teach “do it this way because this other way doesn’t work,” and “we do it this way because otherwise we break this piece and the whole thing is ruined.” I teach “This part seems boring, but here are all the cool things we can do with it later.”

I also learned a lot from raising my own kids and volunteering in their schools, helping all kinds of other kids learn. You need to be able to express a single piece of information many different ways in order to get different kids to understand it. As a volunteer, I was able to sit with individual children and small groups. The kids who didn’t understand things when they were taught the same way to all 30-something students would get it if I spent some time with them and figured out what their individual contexts were.

_______________

Fast forward to the mid 90s – I started antidepressants, and then I discovered that my ADHD had not actually gone away as the experts had told my parents it would, and as my parents told me it had. Now I had a reason to learn about the brain, starting with disorders and injuries, and what they taught us about the functions of various structures. That gave me a context to learn about brain development and genetics. This led to investigating epigenetics. Along the way, it also tied in to reading medical and science blogs and books, and any time a piece of knowledge stuck to something that was relevant to something I already knew, it also became relevant.

So why do you want to listen to someone who doesn’t have a degree in science or medicine when it comes to science or medicine? Because of the way I’m learning it. That whole “Translating Science into English” thing I mentioned a few posts back. Scientists have their own language, and it’s important that they do so they speak with clarity and precision. But if you don’t have the context that they do, it’s hard to understand – and easy to misinterpret. I didn’t learn this in the linear fashion that they did.

If you were to teach me vocabulary and facts and mechanisms, I’d remember it just as well as I did in high school. But give me a study of something that relates to something that interests me, and I will look up all those words and facts and mechanisms, and they’ll make sense because they’re part of something else. They have more meaning when they’re in context.

The other thing I learned came from watching scientists argue with one another. While they’re not always polite, they always present evidence. Most of them are critical thinkers, when someone says something that is questionable, they will (sometimes very methodically and in great detail) explain the flaws in the reasoning. Following along with this taught me the scientific method and why it’s important, how to evaluate how robust the data is by looking at the size of the study, the quality of the blinding, the strength of the variables and controls, how well it integrates existing evidence (and how strong that evidence is) and, most importantly, no matter how good a study may be, it’s never PROOF. It also doesn’t prove other things that weren’t part of the study. It’s also probably not a major breakthrough.

I learned about p-values, journal impact factors, the good and bad of peer review, the pros and cons of open access. I learned that not all “evidence” is actually evidence.

_______________

The problem that many, many scientists have, though, is that they forget what it’s like to not know this. Sometimes they present what they know in a way that is off-putting to laypeople. Sometimes they present a press-release version of their findings, breathless with excitement and full of hyperbole, and that’s even worse. (That’s what we have The Daily Mail and Huffington Post for. Let them do their job.)

So if I were a science teacher, or I were designing a science education program, I’d throw out teaching the basics as freestanding facts. Get rid of the rote learning. Give the students just enough information to dive into a challenge and figure out the rest. Give the kindergarteners a bowl of cream and some food coloring and dish soap – let them play and then tell them how it works. Let the older kids listen to each others’ heartbeats, check each others’ blood pressure, draw pictures of hearts and veins and arteries, and use that to introduce the circulatory system. Make everything part of an experiment that related directly to them so that it was important. Let them figure out what’s correct and what’s incorrect as much as you can on their own by giving them questions as much as answers. Make the science interesting and integrate critical thinking into the lessons, and get them excited. This will be good for them, and good for society, because they’ll question everything – and come up with their answers based on what evidence is best supported.

2 Responses »

  1. I think post publication peer review sites like https://pubpeer.com/recent & http://www.ncbi.nlm.nih.gov/pubmedcommons/ may be able to help out a bit with the science hype– plus I think it’ll be useful for folks to see scientists disagreeing with each other. Retraction Watch is another good resource (http://retractionwatch.com/).

    Science literature is supposed to be the start of a conversation between experts, in our own language as you put it- but too many scientists and universities are treating research articles like they’re the final say. The literature is *not* supposed to be a text book!

  2. Thank you for the links. There’s plenty of information out there on how to distinguish pseudoscience from science, but it’s more difficult to distinguish well-done science from poorly-done science. I’ll have to add those to my bookmarks!

Leave a Reply